
  

 

Genetic Roach Infestation Optimization  

Optimization Algorithm based on Cockroaches’ social life 

 

António Gustavo Lança Brites 

 

 

Thesis to obtain the Master of Science Degree in 

Mechanical Engineering 

Supervisor: Prof. João Miguel da Costa Sousa 

 

 

Examination Committee 

Chairperson:  Prof. Paulo Jorge Coelho Ramalho Oliveira  

Supervisor: Prof. João Miguel da Costa Sousa  

Member of the Committee: Prof. Duarte Pedro Mata de Oliveira Valério  

 

 

 

November 2017



 

 

 

 

 

 

 



  

 

i 

 

Acknowledgements 

 

This work is the final of an academic path. However, for me, it is even more special once it only come 

true due to all the support my family always gave me while I was already working. I will never forget it 

and I will be thankful all my entire life. 

Also to my thesis advisor for all the patience and wise advises despite my lack of availability. It was 

really appreciated. 

Finally to every single student and teacher that crossed with me and more or less contributed with a 

piece of who I am and where I am. 

Thank you all. 

   



  

 

ii 

 

Abstract 

 

This work presents a novel adaptation of Particle Swarm Optimization (PSO) algorithm based on Roach 

Infestation Optimization (RIO). This algorithm is inspired on cockroaches’ scientifically demonstrated 

behaviours. Cockroaches have been able to survive over the centuries and that is only possible due to 

their capacity to live in community and share information, for example the location of like dark spots to 

hide or food. Genetic Roach Infestation Optimization (GRIO) is more tied to roaches’ life than RIO. It 

uses a multi-swarm and self-adaptive strategy to avoid falling into local optima and converging too soon.  

Using a self-adaptive inertia weight, it is possible to explore a global or a local search, according to the 

algorithm feedback. This algorithm allows, in the same space, the presence of two different families of 

cockroaches that behave independently. To keep the information for both families balanced,  

reproduction behaviour (based on a regular Genetic Algorithm) is carried out. In that reproduction, born 

child will have a crossover of parents’ information. To preserve diversity some mutations are enabled.  

Afterwards, the proposed algorithm is tested in some benchmark functions with several different  

characteristics in comparison to other algorithms. Results clearly support that cockroaches’ life adapted 

into PSO algorithm greatly improves optimization results on the most adverse functions. 
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Resumo 

 

Este trabalho apresenta uma nova adaptação do Particle Swarm Optimization (PSO) baseada no Roach 

Infestation Optimization (RIO). Todos os comportamentos das baratas que serviram de inspiração a 

este algoritmo estão comprovados pela biologia. As baratas habitam neste planeta há séculos, 

ultrapassando diversas fases do mesmo. Isto não teria sido possível sem a capacidade delas em viver 

em comunidade e partilhar informação. Por exemplo, a decisão do melhor local escuro para esconder 

e encontrar alimento é decidida em sociedade. Este algorimo - Genetic Roach Infestation Optimization 

(GRIO), representa mais aspectos da vida das baratas que o RIO. Usa duas famílias distintas de 

baratas e um peso inercial adaptativo (que permite uma busca mais global ou local de acordo com a 

situação) para evitar óptimos locais. As duas famílias têm comportamentos independentes. No entanto,  

para haver troca de informação, entre elas, pode haver reprodução (baseada num algoritmo genético 

normal). Uma vez que a reprodução é entre familias diferentes, a cria terá informação de ambas as 

familias. Para aumentar ainda mais a diversidade, algumas crias poderão sofrer mutações no c ódigo 

genético. Por fim, o algoritmo proposto é testado em algumas funções referência (com características 

diversas) e comparado com outros algoritmos. Os resultados comprovam que os comportamentos das 

baratas adaptados ao PSO aumentam a possibilidade de obter os melhores resultados óptimos 

possíveis.  
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1 Introduction 

 

This chapter objective is to explain this work context. It is explained why this thesis was done,  

motivations and goals. Also, a general overview of optimization is presented, in order to allow a reader 

with less optimization experience to follow this work and, maybe, become an optimization enthusiast. 

The document organization and contributions are also explained so that readers can follow it in an easier 

and effective way. 

 

1.1 Objectives and Motivation 

 

This work started as a spontaneous idea. While watching a documentary (episode 7 from Pure Science 

Specials season 1) about cockroaches’ behaviour it was understood that those animals have a lot of 

potential. For example, according to that documentary, their anatomy inspired robots that can help 

humanity and also some medical developments. 

The documentary presented the different fields of technology that used cockroaches and also a thorough 

explanation of cockroaches’ life. It was clear to me that these animals behave in a highly optimized way. 

It was impossible to think in a way to make cockroaches’ life more efficient. Cockroaches, really, work  

as a team in order to find the best places to eat and to hide. Actually, their behaviour follows some 

patterns easily identified that allows them to behave in such an optimized way. In fact, after some read 

around those patterns, I came to the idea that, if we created those rules mathematically (the same as 

creating virtual cockroaches) we could find mathematical functions’ best solution.  

Nowadays, optimization is conquering a major role in our world [35]. Every single decision in military 

approaches, companies decisions and even governmental boards is taken with much more careful and 

advice. A decision slightly better than the opponent’s one can deliver success, and a decision slightly 

worst can deliver failure [9]. 

That’s why the investment in optimization resources is getting bigger and bigger [9]. Actually, a lot of 

companies spread around the world are creating optimization departments in order to increase profits,  

decrease wastes, increase productivity, reduce line setup times, increase new product development 

success, etc [9]. 

With the understanding of the increasing importance of optimization in companies and in life in general,  

and in a time were the future professional career must be defined, to create a master thesis in the 

optimization area was an obvious choice. 

With the objective to create a new approach to optimization and to be creative, this thesis theme come 

up and work was initiated. 
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Summarizing: taking into consideration the importance of optimization in our world and the very efficient  

behaviour of cockroaches’ colonies, the idea to mimic cockroaches’ life into an optimization algorithm  

capable of solve the most difficult functions appeared.  

 

 

1.2 State Of The Art 

 

In this chapter, a brief description of optimization basics is presented. It is expected that a user not  

familiarized with optimization can understand the basics, and with that knowledge, follow this work.  

Then, cockroaches’ real behaviours, in a biologic perspective, are presented.  

 

1.2.1. Optimization: a General Overview 

 

Humanity, even in pre-history, always sought the best option to every single decision in order to save 

resources, time or energy. For example a hospital  service wants to reduce the time each patient  

waits for medical assistance, a formula one team changing tyres wants to reduce its activities time and 

a car manufacturer tries to reduce vehicle’s energy consumption. Even in nature, every single process 

is carried in order to reduce energy and process time among others.  

Once people started to understand optimization’s potential (by saving costs in industrial processes or 

time in finding complex problems solution, for example), engineers and mathematicians have been 

directing their efforts to develop new strong, effective and efficient analytical methods that could deliver 

the best way to find a solution and decide an approach – activity named operations research [9, 35]. So, 

as we can see, operation research (OR) and optimization are intrinsically connected once researchers  

use a lot of optimization algorithms to underlie their decisions in order to find a best solution (there are 

problems where there’s no unique optimal solution). Due to the evolution in operation research and the 

results that this concept obtains, it has been possible to companies and researchers to improve profit,  

process time, energy, resources among others. In table 1.1 it’s possible to check some of the benefits  

OR brought to some organizations. 

 

 

 

 

 



  

 

3 

 

             Table 1.1: Some applications of operations research [9] 

Organization Nature of Application Annual Savings 

Monsanto Corp. 
Optimize production operations in chemical 
plants to meet production targets with 

minimum cost 

$15 million 

United Airlines 
Schedule shift work at reservation offices and 
airports to meet customer needs with 

minimum cost 

$6 million 

IBM 
Integrate a national network of spare parts 
inventories to improve service support 

$20 million  
+ $250 million  

less inventory 

Delta Airlines 
Maximize the profit from assigning airplane 
types to over 2500 domestic flights 

$100 million 

China 
Optimally select and schedule massive 
projects for meeting the country's future 

energy needs 

$425 million 

Taco Bell 
Optimally schedule employees to provide 
desired customer service at a minimum cost 

$13 million 

Hewlett-Packard 
Redesign the sizes and locations of buffers in 
a printer production line to meet production 

goals 

$280 million 
more revenue 

 

OR was used by the first time on World War II when the English army created a team only to find the 

best way to utilize arms, vehicles and radars. Even though that team was the first official OR team, the 

roots of OR are decades before in the early 1800s [9, 35]. 

When presented with a problem any OR team is proceeding in the very same way.  

 

 

Figure 1.1: Diagram for OR to solve a problem [9] 

 

First of all, according to figure 1.1 it’s necessary to understand the problem. Several times, the OR team 

does not receive detailed information about the situation to be solved. That’s why it  is important to keep 

in touch with the management that presented the problem. The OR team must know very well the main 

objective of the problem (what do you want to find out), some constrains (what you cannot perform),  

time limits and so on.  All this data can be obtained in a meeting with management or collected in the 

field (if it’s a physical problem) [9]. 

Information 
gathering about the 

problem 

Problem fully 
understood 

Transformation into 
mathematical 

functions 

Functions analyses and 
decision about best way to 

solve them 
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After all the data about the problem is collected and well known, the OR team, needs to transform it in 

mathematical equations, as described on step 3 of figure 1.1.  That way the problem can be defined in 

a mathematical expression, being able to be solved mathematically and simulated. So, according to 

Nocedal et al [35], we must define the following terms: 

o Variable vector, also called parameters or unknowns 

o Objective function that depends on 𝑥,𝐹(𝑥) . 

o Vector function of 𝑥 with constraints, 𝐶(𝑥). 

In a more detailed way, when we have a problem and are defining it, 𝑥  are our variables, where we can 

change values in order to get solutions. 𝐶(𝑥)  are the values our variables cannot take and, finally,  𝐹(𝑥) 

is the function we want to maximize or minimize (it depends on the case). 

As an example, that resumes the first 3 steps of figure 1.1, we can imagine that a company management 

asked the OR team to define what is the best hour and month to shut down the production, in order that 

a 3 hour intervention can be made, minimizing the impact it will produce on the company profit.  

The first step the OR team executes is to understand the main goal: minimize profit reduction. Then, it 

is necessary to check all constraints: since company only works on a 9am to 6pm schedule the 

intervention cannot be made outside this hour range. Once all data about the problem is collected and 

well known it’s time to model all this information mathematically so, in a first approach, the team identifies  

the variable vector x: 

 

 𝑥 = [ ℎ𝑜𝑢𝑟
𝑚𝑜𝑛𝑡ℎ

] (1.1) 

 

Once the variable vector it’s identified, the team defines constraints. The only constraint from everything 

that it’s known is the company working hours, since the company closes at 6pm and the intervent ion 

lasts 3 hours it cannot be started after 3pm. So, the following equations define all constraints:  

 ℎ𝑜𝑢𝑟 + 3 ≤ 18 (1.2) 

 ℎ𝑜𝑢𝑟 > 9 (1.3) 

 𝑚𝑜𝑛𝑡ℎ ≥ 1 (1.4) 

 𝑚𝑜𝑛𝑡ℎ ≤ 12 (1.5) 
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At least but very important, it’s necessary to define the objective function. That’s the function that relates  

the variable vector to the desired objective. In this case, the OR team found out that the profit variation 

is established (for example) by: 

 𝐹(𝑥) = 5 ∗ ℎ𝑜𝑢𝑟 − 15 ∗ 𝑚𝑜𝑛𝑡ℎ  (1.6) 

Now, this example is fully defined mathematically and the OR team could proceed to the forth step of 

figure 1.1. 

On the forth step, the OR team tries to develop some procedures to solve the mathematical equations.  

This simple case, a linear equation, could be solved by linear methods such like simplex [35]. 

However, in real life, problems are not as easy as the one described. Sometimes we have a lot of 

variables, constrains and non-linearities. In these cases, solving by linear methods would not be efficient  

once the time to solve it could be extremely high. So, some algorithms were created in order to solve 

complex problems without using that much time (metaheuristics  – chapter 2). 
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1.2.2. Cockroaches’ social life 

 

Cockroaches are not solitaire and non-social animals [28]. That’s a fact that almost nobody likes 

cockroaches. However, understanding cockroaches’ potential, biologists have been studying these 

animals thorough. 

Everything that we were able to find about cockroaches inspired a lot of new technologies, for example,  

robots with similar physiognomy that can be used to rescue survivors in disasters  or scout harsh lands 

for military purposes and optimization [17]. In fact, this thesis mimics cockroaches’ behaviours in order  

that mathematic functions can be optimized. 

Cockroaches are very social animals that do not like to be alone and like to share information between 

themselves [4, 28]. Actually, if you spot one cockroach, it means one thousand are nearby hidden 

somewhere. In fact, such desire to live in groups, as a group (meaning, each individual acts as an agent  

of the group) and a genetic code very suitable to mutations allowed them to last in the planet Earth for 

more than 300 million years [40]. This resistance found on cockroaches also inspired human beings to 

create some myths about them such as: cockroaches could live without head or survive to nuclear 

attacks. 

This thesis was inspired in cockroaches’ social behaviour and cycle of life. The cockroaches’ colonies  

have some goals to achieve. Cockroaches do not like light and they try to remain always hidden and lay 

eggs in dark shelters [12]. Those shelters are decided by all the cockroaches in the colony. Even if it is 

a big colony, cockroaches help each other to decide the best shelter and food source [12]. They do it 

due to their memory (because cockroaches have memory and can remember information from the past) 

and to their ability to socialize when meeting friends [4, 37]. So, in a resumed way, all cockroaches in 

the colony are trying to find a good shelter and/or food source and, when meeting friends, they are 

sharing the information each one got. That way, in the end, all cockroaches know what is the best spot 

ever found and all of them converge to the same location. 

A fascinating fact about cockroaches, and proof of their very social way of living, can be observed when,  

for example, colony cannot fit in a shelter. In those situations, they are splitting themselves into equal 

groups to fit in smaller shelters. If one finds a shelter for 1000 cockroaches and there are 1001 in the 

colony, the group splits himself into 2 groups (500 and 501) instead of leaving a member alone [1]. Other 

fascinating fact proved by Lihoreau et al is that cockroaches get sick when they are alone. They adopt  

lethargic behaviours and are less likely to move or leave shelters. If the loneliness prevails, they will  

eventually die [28].  

As referred previously in this chapter, cockroaches have survived for millions of years not only due to 

their social behaviour but also for other reasons. The fact that cockroaches’ genetic code is very  

mutable, allied to the fact that all males and females have the same probability to reproduce (no alphas 

or hierarchy) and they are not doing it with family members (no incest) [11, 27], facilitates them to adapt  

to different environments and makes them almost indestructible because new born roaches are always 
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getting different characteristics from different families. That way, the probability of a cockroach with 

some characteristic that allows her to survive in new environments increases. 

 

1.3 Thesis’ contributions 

  

As it was possible to understand on previous chapter, optimization is a huge world. It is very important  

to define the problem in the correct way and to understand how to solve it. 

Nowadays, there are a lot of options to solve continuous optimization problems (where all variables can 

take any real value between defined ranges) and discrete problems (where variables can only take a 

specific set of values) [35]. 

One of those options, is described in the chapter Roach Infestation Optimization (RIO), once it was the 

first work ever done in this field. However, this work still presents: 

 A novel algorithm, more tied to cockroaches’ social life than RIO to solve continuous problems 

based in a nature behaviour. With more complex problems appearing every single day, it is 

mandatory that the optimization world adapts itself to solve those problems. 

 Ability to solve the most complex continuous functions with success. 

 Some new combinations of swarm techniques to achieve better results  

 

1.4 Thesis’ organization 

 

This work is divided in 5 major chapters. On the first one a brief introduction is done. That way, it is 

possible to understand motivations and goals. In this chapter are also briefly explained the basis of 

optimization and the cockroaches social life. 

On chapter 2, we dive deeper in optimization algorithms. Those that are the base for Genetic  Roach 

Infestation Algorithm, presented in this work, and some other evolutions that already were developed. 

On chapter 3 are explained this new algorithm mechanisms. From a more detailed parallelism of 

roaches’ life with the algorithm, to a detailed explanation of all the algorithm’s mechanisms. 

On chapter 4, benchmark functions for testing purposes are presented along with results comparing 

different algorithms’ performance to the new one.  

Finally On chapter 5 final conclusions are described and further work is suggested.  
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2 Non Linear Problems: Metaheuristics 

 

Metaheuristics are methods (algorithms) to solve problems. While a heuristic is a method to solve only  

one specific problem (problem dependent), a metaheuristic can solve a lot of different  problems 

(problem independent) [9]. Resuming, metaheuristics are methods to solve optimization problems that 

do not depend on the problem itself, that is to say, metaheuristics explore all the solution space randomly  

orientated, without taking advantage on any particularity of the problem itself, and based on the solutions 

found, it decides where to move next until it converges to one specific solution that can be the best one 

or not. That’s why, before using a metaheuristic in a problem, we always must decide which one is the 

best for our problem, the number of iterations and the number of times we run the problem [9]. 

In this chapter are presented all the algorithms that were analysed as basis for this thesis. First it is 

presented Particle Swarm Optimization, the first work ever done in the flock simulation area. Then it is 

presented Roach Infestation Optimization, an algorithm that was the first step for this work to be 

possible. In the end all other related works are presented in order that we can understand the kind of 

strategies researchers are using to improve solutions in complex non-linear problems.  

 

2.1 Particle Swarm Optimization 

 

Groups of birds, insects and fishes are able to synchronize velocities, turning manoeuvres and to 

perform several activities (landing for example). Such behaviour has intrigued several authors that have 

been trying to understand the way that kind of social behaviour works. Wilson, in 1975, said that animals’ 

social behaviour was established by some rules [41] and, since that conclusion, researchers have been 

trying to figure out those rules. 

Craig [3] was the first author presenting some work in flocks simulation. He presented this phenomena 

(flocks of birds, herds and schools of fishes) as three simple rules: collision avoidance - since it is 

impossible that two particles (bird, fish, insect among others) exist in the same position, at the same 

time, every single one avoids to crash with other flock mates; velocity matching - each flock member 

attempts to match his own velocity with nearby mates; and flock centring - each particle tries to keep 

close to nearby mates. 

Kennedy and Eberhart, in 1995 [22], pioneered an entire new approach to optimization problems, when 

inspired in real world swarm intelligence, the authors developed a new optimization algorithm based on 

some behaviours of birds flocking, PSO.  

They defined a world whose dimensions were the variables of the chosen objective function, based on 

several studies mentioned above. So, if our objective function 𝐹, has 𝐷 variables, there’s a swarm (in a 

D-dimensional world) where each 𝑖𝑡ℎ particle exists on a certain position 𝑋𝑖 = [𝑥 𝑖1 𝑥 𝑖2
… 𝑥 𝑖𝐷]𝑇 and 
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moves by a certain velocity 𝑉𝑖 = [𝑣𝑖1 𝑣𝑖2
… 𝑣𝑖𝐷 ]𝑇  (limited to 𝑉𝑚𝑎𝑥 ), during 𝑡 iterations, trying to find 

the best possible position. The best location is defined proportionally to the fitness function. It means  

that if we want to minimize 𝐹 function, the best position will be defined by the smaller value that a 

particle’s position achieves.  

In this optimization approach, particle’s velocity on instant 𝑘,𝑉𝑘 , depends on the previous velocity 𝑉𝑘 −1, 

on the particle’s best position ever achieved, 𝑃𝑏𝑒𝑠𝑡  (individual component), and on the position of the 

best positioned particle in all swarm 𝐺𝑏𝑒𝑠𝑡  (social component). That way, it is possible to calculate the 

next position using the following equations: 

 𝑣𝑖
𝑘+1 = 𝑣𝑖

𝑘 + 𝐶1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥 𝑖

𝑘) + 𝐶2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥 𝑖

𝑘)  (2.1) 

 𝑥 𝑖
𝑘+1 = 𝑥 𝑖

𝑘 + 𝑣𝑖
𝑘+1 (2.2) 

On these equations, 𝑟1 and 𝑟2  are D-dimensional vectors with random values between 0 and 1. These 

random vectors help to keep diversity on swarm. 𝐶1 and 𝐶2 are cognitive and social factors, respectively .  

These are the parameters that define the influence of cognitive and social components on particle’s  

velocity. Usually they are set, as suggested by Kennedy [16], in a way that  𝐶1 plus 𝐶2 equals 4. However,  

in 2001, Carlisle and Dozier [2], developed their research on cognitive and social parameters influence 

and found out that, for some functions, a sum lower than 4 was the best choice (like Schaffer F6). They 

also found out that, the values usually used on common sense of 2.05 to both 𝐶1 and 𝐶2 were not the 

best ones. They came to the conclusion that the best choice should be a ratio of 2.8 of cognitive 

parameter to 1.3 of social one. 

Later, both Eberhart and Kennedy tried to improve PSO performance and capacity of get out from local 

optima by changing the global neighbourhood 𝐺𝑏𝑒𝑠𝑡 , to a local neighbourhood 𝐿𝑏𝑒𝑠𝑡  [6]. They established 

that, instead of using all swarm to define the best solution, each particle would only use its 𝑁 neighbours ,  

i.e. if we are defining two neighbours, particles’ 𝑖𝑡ℎ 𝐿𝑏𝑒𝑠𝑡  would be chosen between particle 𝑖 + 1𝑡ℎ  and 

𝑖 − 1𝑡ℎ . According to Kennedy [21], 𝐺𝑏𝑒𝑠𝑡  version provides a faster convergence but it is trapped in local 

minimal more easily than the neighbourhood version. Novel topologies of neighbourhood were 

introduced by Kennedy et al [23]. Most common approaches are the classical ones - Global best and 

Local best - represented on figure 2.1(a) and figure2.1 (b) and the wheel one, represented on figure 2.1 

(c), where all particles share its information to a focal individual. All these topologies, and some others,  

were studied by Kennedy and Mendes [24]. They concluded that some topologies, in general, have 

better results. However it was impossible to name the ones that result in the best performance to a 

range of functions, once the topology depends on the problem we are solving.  
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Figure 2.1: Neighbourhood topologies. Global Best (a). Ring topology–Local Best (b). Wheel topology (c). 

 

 

 

 

Another advance in PSO was achieved by Eberhart and Shi, in 1998, when they presented inertia 

weight, 𝑤, into velocity equation [43]. 

 𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝐶1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥 𝑖

𝑘) + 𝐶2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥 𝑖

𝑘)  (2.3) 

 𝑥 𝑖
𝑘+1 = 𝑥 𝑖

𝑘 + 𝑣𝑖
𝑘+1 (2.4) 

It receives a value between 0 and 1 and defines the importance of particle’s previous veloc ity. If it is a 

lower value there is a preference in local search once the previous velocity it is not valorised and the 

final velocity will be smaller. If it is a higher value, there is a preference in global search, because the 

previous value is highly taken into account.  

As inertial weight is a major parameter to proper convergence and it is difficult to choose a suitable fixed 

inertia weight, several authors have been developing new techniques to introduce a variable inertial 

weight that adapts while algorithm is running. So, understanding that in the beginning it is important to 

promote a global search in all the area and in the end a local search, Shi and Eberhart [38], proposed 

a linear variable inertia weight that decreases from a maximum value (they defined 1.2 but it can be 

adjusted) to a minimum value (defined as 0) as represented on equation 2.5. There are three types of 

inertia weight: constant and random; time varying (like the one represented on equation 2.5); and 

adaptive ones, where inertia weight is adjusted according to some feedback parameters. Nickabadi et 

al [32], concluded their research in analysing all different types of inertia weights before introducing a 

new adaptive one.  

 
𝑤(𝑘) = 𝑤𝑚𝑎𝑥 − (

𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑘𝑚𝑎𝑥

) 𝑘 (2.5) 
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In order to get PSO fully operational, it is necessary to define all the parameters in the best possible 

way [2]. These parameters are maximum velocity  𝑉𝑚𝑎𝑥 , cognitive parameter,𝐶1, social parameter, 𝐶2, 

and inertia weight, 𝑤. Literature provides some clues on finding the proper values, however, that is a 

decision that has to be made while implementing, according to the nature of the problem.  

Due to its easy implementation, few parameters to define as well as the ability to solve dynamic non -

linear continuous problems PSO algorithm (represented in table 2.1) have been used in several 

applications such like neural networks training, structural optimization among others, for example [6, 8].  

 

 

Table 2.1: Particle Swarm Optimization 

Algorithm 1: Particle Swarm Optimization   

Define:         Fitness function 𝐹 

                        Parameters 

Initialize:    Population 𝑁 in random positions 

                        Each particle’s best position, 𝑃𝑏𝑒𝑠𝑡  

                        Best Global Position, 𝐺𝑏𝑒𝑠𝑡 

Compute:    for k=1 to Max_iteration 

                               for  i=1 to N 

                                       𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝐶1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥 𝑖

𝑘) + 𝐶2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥 𝑖

𝑘) 

                                       𝑥 𝑖
𝑘+1 = 𝑥 𝑖

𝑘 + 𝑣𝑖
𝑘+1 

                                       if Z(𝑥 𝑖
𝑘+1) < Z(𝑃𝑏𝑒𝑠𝑡𝑖

𝑘 ) 

                                           𝑃𝑏𝑒𝑠𝑡𝑖
𝑘+1= 𝑥 𝑖

𝑘+1  

                                       Update 𝐺𝑏𝑒𝑠𝑡𝑖
𝑘 to 𝐺𝑏𝑒𝑠𝑡𝑖

𝑘 

 

 

In order to improve its performance, a lot of PSO variations were developed and studied. The aim is 

always to achieve global optima in the less possible iterations.  

As an example, it’s possible to describe some of them: Peram et al, in 2003 [36], introduced a new PSO 

variant (fitness-distance-ratio PSO) where each particle is not only influenced by best one but also by 

it’s well positioned neighbours. 

Van den Bergh and Engelbrecht used multi-swarms that optimize different components of solution vector 

and cooperate between them [39]. In 2004, Mendes et al [31], introduced the fully informed PSO, where 

each particle is influenced by all neighbours and not only by the one with the best position. 
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Comprehensive learning PSO was presented by Liang et al [26] and suggests that better results can be 

obtained if particle is able to consider all friends best solution and select one of them. Krohling and 

Coelho [25] made a PSO version, called Evolutionary PSO using Gaussian Distribution for Solving 

Constrained Problems, to solve min-max problems. In this new PSO, instead of using a uniform 

probability distribution to generate accelerations and one swarm, it’s used a Gaussian probability  

distribution and two swarms.  

In 2007, Niu et al [34] published a new multi-swarm algorithm based on a master-slave model. In this 

algorithm, there are slave swarms that are looking for problem solution in an independent way and one 

master swarm that defines its course according to its own experience and to slave swarms experience.  

That way it was possible to keep solution diversification. Understanding that most of the times, the best 

fitness was achieved in the centre of the swarm Liu et al [29] presented a PSO where, in each iteration,  

a particle is transported directly to the centre.  

Li and Xiao [19], in 2008, developed a multi-swarm and multi-best PSO. In this variation, particle velocity  

is updated using multi-personal best and multi-global best instead of one and a multi-swarm that, in the 

end, unites in a single one. Jie et al [18], created a knowledge billboard where information regarding 

search dynamics and environment is recorded and shared between all swarms. Also in 2008, Del Valle 

et al presented a very complete study in a large number of PSO variants and its  applications [5].  

At last , but still important to mention, it’s Zhang and Ding’s work [44], in 2011, that reports to a PSO, 

called Multi-Swarm Self-Adaptive and Cooperative PSO, that uses four different swarms that have a 

cooperative and competitive behaviour between them to avoid local optima.  

 

2.2 Roach Infestation Optimization  

 

Roach Infestation Optimization (RIO) [14] stands for the first algorithm based on cockroaches’ social 

life. Havens et al, understanding that cockroaches enjoy family company and socialize between them, 

changed the social component in PSO’s velocity update equation.  

Instead of learning only from best-positioned particle, in RIO, cockroaches learn from neighbours if 

there’s socialization. Therefore, when a cockroach can find friends in its detection radius 𝑑𝑟  (equation 

2.6), there’s the probability (table 2.3) that those roaches socialize.  

 
𝑑𝑟 =

∑ (∑ ‖𝑥 𝑖 − 𝑥𝑗‖𝑁
𝑗=𝑖 )𝑁 −1

𝑖=1

∑ (∑ 1𝑁
𝑗=𝑖

)𝑁 −1
𝑖=1

 (2.6) 

That socialization is carried out by an exchange of knowledge according to equation 2.7: 

 𝑏𝑘1 = 𝑏𝑘2 = 𝑎𝑟𝑔 min{𝐹(𝑏𝑘𝑗 )} , 𝑗 = {1,2} (2.7) 
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Where 𝑏𝑘 is the best known position (for roach 1 and roach 2) and 𝐹 is the objective function. So, every  

single time a roach meets another one, and they socialize, both roaches will remember the same best 

position ever achieved by someone. 

Finally, velocity equation on RIO algorithm will be as equation 2.8 displays:  

 𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝐶1𝑟1(𝑏𝑣𝑖
𝑘 − 𝑥 𝑖

𝑘) + 𝐶2𝑟2(𝑏𝑘𝑖
𝑘 − 𝑥 𝑖

𝑘 ) (2.8) 

 

Where 𝑤 is inertia weight, 𝐶1 and 𝐶2 are cognitive and social components, respectively, 𝑟1  and 𝑟2  are D-

dimensional vectors with random values between 0 and 1 and 𝑏𝑣 is the best visited position (same as 

past best (𝑃𝑏𝑒𝑠𝑡 ) position from PSO). In table 2.2, RIO is presented. 

Table 2.2: Roach Infestation Optimization 

Algorithm 2: Roach Infestation Optimization   

Define:         Fitness function Z 

                        Parameters 

                        A=probability to socialize (table 2.3) 

Initialize:    Population N in random positions 

                        Each roach’s best visited position, 𝑏𝑣 

                        Best Known Position, 𝑏𝑘 

Compute:    for k=1 to Max_iteration 

                               𝑑𝑟 =
∑ (∑ ‖𝑥𝑖 −𝑥𝑗‖𝑁

𝑗 =𝑖 )𝑁−1
𝑖=1

∑ (∑ 1𝑁
𝑗=𝑖

)𝑁−1
𝑖 =1

 

                               for  i=1 to N 

                                       for j=1 to N 

                                           if 𝑗 ≠ 𝑖 && 𝑟𝑎𝑛𝑑 ≤ 𝐴 

                                               𝑏𝑘𝑖 = 𝑏𝑘𝑗 = 𝑎𝑟𝑔 min{𝑍(𝑏𝑘ℎ
)} , ℎ = {𝑖, 𝑗} 

                                       𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝐶1𝑟1(𝑏𝑣𝑖
𝑘 − 𝑥 𝑖

𝑘 ) + 𝐶2𝑟2(𝑏𝑘𝑖
𝑘 − 𝑥 𝑖

𝑘 ) 

                                       𝑥 𝑖
𝑘+1 = 𝑥 𝑖

𝑘 + 𝑣𝑖
𝑘+1 

                                       if Z(𝑥 𝑖
𝑘+1) < Z(𝑏𝑣𝑖

𝑘 ) 

                                           𝑏𝑣𝑖
𝑘+1= 𝑥 𝑖

𝑘+1  
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Table 2.3: Probability of roaches' socialization according to the number of neighbours [14] 

Number of Neighbours Probability of socialize 

  1 0.49 

2 0.63 

≥3 0.65 

 

 

2.3 Other Algorithms 

 

In early 1970’s, John H. Holland [15], created an algorithm based on nature evolution rules, Genetic  

Algorithm. Basically it is an algorithm that follows Darwin’s principle that says “the survival of the fittest”. 

This algorithm creates a population of N individuals, where each individual genetic code is a possible 

solution. Then, during each iteration, some individuals die (according to different methods of selection) 

and the other ones (usually the ones with the better fitness score) reproduce between then (also 

selected by different methods), generating new individuals that might be more adapted then the parents  

[13]. This reproduction is carried on by mixing some parts of the genetic code of the father and mother.  

After the recombination, some mutations can be introduced in order to keep diversity  [33]. 

Just for the record, other examples of nature based algorithms are: ant colony optimization where a 

group of ants decides the best path to the food using their pheromones [30], cuckoo search that mimics 

the cuckoo’s behaviour of laying eggs in other birds nest  [42] and artificial bee colony optimization where 

a colony of bees tries to find a group of food sources with high nectar and in the end, the one with the 

highest nectar [20]. In 2013, Fister Jr. et al, created a brief review on nature based algorithms and each 

one with a classification [7]. 

Also, to solve continuous problems, there are algorithms not connected to nature. This work is not  

focusing on those kind of algorithms, but GLODS (Global and Local Direct Search) was used as a 

reference to compare results, due to its very complete report and results [4]. 
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3 Genetic Roach Infestation Optimization 

 

This dissertation proposes a novel continuous algorithm: Genetic Roach Infestation Optimization 

algorithm. A parallelism between roaches’ behaviour and techniques used in the algorithm will be 

presented, and all the equations will be displayed. 

 

3.1 Overall Description 

 

Despite the evolution from PSO to RIO, we still cannot avoid efficiently premature convergence and 

local optima. With RIO, we still cannot ensure that we find the global optima in an efficient way. Actually, 

with more complex functions, RIO can get stuck in local optima points (such like peaks and valleys).  

Also, RIO showed not to be so good for functions with high dimensionality (see table 4.3).  

Understanding such drawbacks, in this work, a novel optimization algorithm developed to continuous 

problems is proposed, Genetic Roach Infestation Optimization (GRIO).  

GRIO is more tied to cockroaches’ behaviour than RIO and it  is highly founded on some characteristics 

from the cockroaches’ life. In figure 3.1 we can find the relation from cockroaches’ behaviours to 

algorithm construction. 

As referred in chapter 1.2.2, cockroaches work in team in order to find the darkest spot where all the 

colony can fit. In the presented approach, darkness level at some location is proportional to fitness 

function 𝑍(𝑥) at that location. If we want to minimize function 𝑍(𝑥) at location 𝑥 ∈ ℝ𝐷 , darkness increases 

as much as 𝑍(𝑥) decreases. Each cockroach, in GRIO algorithm, is represented by a group of 

coordinates (for each dimension, which mimics his position in the space) 𝑥 ∈ ℝ𝐷. 

Because cockroaches socialize when meeting friends, when in the algorithm two cockroaches are close 

to each other they might stop and socialize. That socialization is imitated by sharing information between 

them. Then, that information is kept in their memory and they continue their path. As in the algorithm, in 

real life, also cockroaches have memory. Each virtual cockroach keeps in memory the best position 

ever achieved and the best position a friend, or the cockroach itself, already achieved. That second 

information is the one shared between cockroaches while socializing.  

Using the fact that cockroaches split themselves in two different equal numbered groups when there are 

no dark spots big enough for all the group; in order to decrease the probability of being trapped in local 

optima, in the beginning GRIO believes that there are no dark spots big enough for all the swarm. So, a 

population consists in two equal sub-swarms seeking a dark spot. Those swarms are two different  

families and behave independently of each other.  Using this independent multi-swarm approach we 

can increase the probability of escape from local optima and increase the solution variability. 
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In real life, all cockroaches are able to reproduce with equal probabilities. However, they do not  

reproduce between family members and, that fact, is good for GRIO once it avoids individuals being 

generated with similar genetic codes. So, GRIO mimics these facts about cockroaches allowing 

cockroaches from different families to reproduce if they find a good place for that. New borns rise with 

Cockroaches always 
seek the darkest spot 

to hide 

Cockroaches socialize 
when meeting friends 

Cockroaches don’t 
reproduce between 

family members 

All cockroaches have 
the same potential to 
reproduce (no alpha 

male) 

Cockroaches hide their 
eggs in small shelters 

When a spot isn’t big 
enough to all roaches, 
they split themselves 
equally into several 

spots  

Cockroaches ’ genetic 
code is very suitable 

for mutations, 
facilitating adaptation 

to several 
environment and 

survival 

Isolated cockroaches 
are less likely to 

explore and leave their 
shelters  

Cockroaches have 
many natural 

predators  

Cockroaches have 
memory  

Parallelism to 
minimum of function 

(goal) 

Initialization with 2 
different independent 

swarms (families) 

Change of information 
between roaches and 
they remember that 

information 

Adaptive inertia 
weight 

Reproduction only 
between different 

families 

All cockroaches can 
reproduce if they best 
location is unchanged 
for 5 iterations (secure 

spot) 

Randoom changes on 
genetic code 

Control size of 
population 

Figure 3.1: Parallelism between roaches' behaviours and GRIO 
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a combination of parent’s knowledge. In order to promote a global search, it is possible that some 

random mutations occur such like in nature, where cockroaches were able to prevail due to their high 

susceptibility to mutations. If we allow the population to keep growing, then the algorithm execution time 

would be excessive so, such like in nature, there are predators that control swarms size.  

A tool to control global and local search is Cockroaches’ speed. The velocity is affected by the number 

of neighbours in the moment and the distance to the best solution.  

An isolated cockroach’s velocity is smaller than a surrounded one. Another velocity controller is the 

distance to the best location ever achieved.  The closer a cockroach is to the best solution the smaller 

will be its velocity to promote a more local search in that area.  

 

3.2 Algorithm Description 

 

In this section, a detailed explanation on Genetic Roach Infestation Optimization algorithm, GRIO, is 

presented. As already introduced, in the previous chapter, GRIO is an algorithm with a very strong 

parallelism to cockroaches’ life. In the algorithm, a roach is defined by her position 𝑥 ∈ ℝ𝐷  where 𝐷 is 

the dimension. Roaches’ positions are the number of points that inserted in the function to optimize give 

us a solution 𝑍(𝑥).  

This algorithm, while being developed, always tries to promote diversity in all the elements of the 

population while promoting a global search in the beginning and a local search in the end. In fact, as we 

can learn from other authors in chapter 1, this is the objective for these kind of algorithms since it is the 

best way to find the global optima without suffering premature convergence. 

The algorithm initializes with two different swarms (families of cockroaches) with the same number of 

elements. Those swarms behave in an independent, but similar way and only change information while 

reproducing (ability only possible between members of different swarms). In other words, both swarms 

follow the same equations and behaviours and interact only while reproducing.  

Resuming, in this algorithm one roach moves, then it is checked if that roach is able to reproduce or not. 

If yes, it is decided if the sons are mutated or not. This is repeated for all roaches in all swarms. GRIO’s  

flowchart can be found on figure 3.2. 
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Figure 3.2: GRIO's Flowchart 
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3.2.1.  Search Behaviour 

 

Regarding movement, GRIO is highly based on RIO and PSO once its search behaviour is equal to the 

RIO search behavior. Before moving, it is necessary to verify if a cockroach has friends (in the same 

swarm) inside its detection radius, defined by equation 2.6 such like RIO. If there are friends in that 

detection radius, there is a probability (table 2.3) that these cockroaches will stop and socialize. 

Socialization is performed in the algorithm by comparison between roaches best-known position. So, 

when two roaches meet, both roaches best-known position is updated according to equation 2.7. Then,  

once best-known position it’s updated, roach’s position is calculated using equations 2.8 and 2.4, 

respectively. Search behaviour for GRIO can be consulted in table 2.3. To keep the information on the 

2 different swarms on the same level, instead of a complete iteration (moving all roaches in the swarm) 

for one swarm and then for the other, it was adopted that after one roach moves in a family then, a roach 

from another family should move. In the end, an iteration is only completed after all  roaches from both 

families move, in an alternated way. 

 

3.2.2.  Adaptive Inertia Weight 

 

An important parameter in all PSO-based algorithms is inertia weight. This parameter controls velocity.  

Velocity, in this case, is the size of the “step” a cockroach can give in every single dimension. As one 

can easily see by equation 2.2, 𝑥 𝑖
𝑘+1 increases as much as bigger the velocity value is. The reason why 

the value of velocity is so important relates to the influence of this value in a local or global search.  

Inertia weight influences a lot the velocity value (as you can see on equation 2.8). In fact, it has the 

power to completely transform it. If it presents a lower value there is a preference in local search once 

the previous velocity is not valorised and the final velocity will be smaller. If it is a higher value, there is 

a preference in global search, because the previous value it’s highly taken into account.  

Because of that importance in all the algorithm, inertia weight must be chosen carefully. Algorithm 

convergence can be successful by applying the right value or, ruined by applying the wrong one.   As 

inertial weight is a major parameter to proper convergence and it is difficult to choose a suitable fixed 

inertia weight, several authors have been developing new techniques to introduce a variable inertial 

weight that adapts while algorithm is running.  

In this work, an adaptive linear decreasing inertia weight, adjusted to each particle/roach, is proposed.  

That way one can achieve better results once linear weight is adapting itself according to each situation. 

On figure 3.3, linear weight adaptive system is represented by a flowchart.  
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Figure 3.3: Adaptive behaviour flowchart 

 

It is important to promote a local search in final iterations and near optimum point. So, when a cockroach 

is about to be moved, its distance to the family’s best position ever achieved is checked (equation 3.1).  

 

𝑑 = √∑(𝑏𝑝(𝑗) − 𝑥(𝑗)2)

𝐷

𝑗=1

 (3.1) 

In this equation, D represents problem dimension, 𝑏𝑝 is the best position ever achieved and 𝑥  is the 

roach position. 

If that distance is smaller than the maximum distance, roach is inside the 
1

4
𝑁 closest roaches to family’s 

best position (with 𝑁 standing for number of family members) and iterations are bigger than 
3

4
𝑖𝑚𝑎𝑥  (𝑖𝑚𝑎𝑥 

is the highest iteration), then inertia weight is updated using equation 3.2, where 𝑁 is the number of 

roaches in the swarm. 

 
𝑤 = −

0.45

𝑟𝑜𝑢𝑛𝑑 (
𝑁
4

)
𝑑 2 + 0.45 (3.2) 

When roaches do not meet criteria to use equation 3.2, inertia weight follows a linear decreasing 

method. So, as long as iterations are increasing, inertia weight is decreasing (equation 2.5).  

Calculate distance to 
family’s best position 

Distance < defined 
radius? 

Roach is one of the 
N closer 

cockroaches to that 
point? 

Equation 3.2 

Present Result 

Roach have neighbors? 

Equation 3.3 and 3.4 Equation 2.5 

Y 

Y 

Y 

N 
N 

N 
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As accompanied cockroaches are more active than those isolated, a parameter was defined (hyper-

activity, equation 3.3) that is summed to regular linear decreasing inertia weight multiplied by the number 

of neighbours (equation 3.4). 

 
ℎ𝑎 = (0.105 − 0.1

𝑖

𝑖𝑚𝑎𝑥

) 𝑁𝑛 (3.3) 

 
𝑤 = (𝑤𝑚𝑎𝑥 − 𝑖

𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑚𝑎𝑥

) + ℎ𝑎 
(3.4) 

 

As we use those equations, where 𝑁𝑛 is the number of neighbours in a certain radius, instead of 

common inertia weights, we can adapt inertia weight and obtain more suitable results. In figure 3.4 are 

represented inertia weight‘s oscillations as iterations increase.  

 

 

Figure 3.4: Inertia weight oscillations. a) Oscillations for roach 1. b) Oscillations for roach 10. c) Oscillations for 

roach 20. d) Oscillations for all roaches. 

 

The main goal from this adaptive inertia weight is to promote the right search in the right time. It means,  

to have a global search in the beginning, where roaches are placed in random places and more likely 

to be far away from the optimal point. And a more local search in the end where it is more likely for our  

          a)           b) 

                                c)                             d) 
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roaches to be close to the optimal point. In fact, with this kind of adaptive inertia weight, we managed to 

decrease the inertia weight along with iterations, despite the possibility to have a local search when 

there is a promisor point to be optimal or near it.  

Resuming, with equation 2.5, we ensure that inertia weight is decreasing linearly along with iterations,  

promoting a more global search in the beginning and a local search in the end. With equations 3.3 and 

3.4 we can escape from local optima - when roaches are trapped in the beginning of the iterations, or in 

the end (if they are not one of the closest to presumed optimal point), they can have a bigger inertia 

weight and escape. That happens because when roaches are with neighbours (and consequently more 

“happy”) they have more energy and inertia weight increases allowing them to move a bigger distance 

in one step. With hyper-activity phenomenon we can also find better solutions in the end once roaches  

can be putted away and come back to the best local. That way, maybe they find a better point.  

As we can learn from the figure 3.4 analyses, and could expect from the way inertia weight value is 

established, this adaptive inertia weight has a guideline equal to linear decreasing method (coming from 

equation 2.5). However, sometimes it is bigger (when a cockroach has neighbours) or smaller (when a 

cockroach is near the best position ever achieved).  

From figure 3, we can also understand that first roaches to move (roach 1 for example) are less likely 

to suffer variations due to hyper-activity (in first iterations) once the first particles to move are more alone 

and not likely to have neighbours. As opposite, for the same reason, if we study roach 20 graphic it is 

possible to note that that roach has more variations due to hyper activity in early iterations.  

Also, we only start to see the influence of equation 3.2 in last iterations due to the condition described 

on equation 3.1, which only allows an inertia weight under the guideline if they are near the optimum 

point, in final iterations.  

Using this kind of inertia weight, and analysing figure 3.4 d), we can easily see that during first iterations,  

roaches are wandering around all the space, increasing the probability of finding the goal point. While, 

in the end, despite some of them still go around (allowing an escape from a possible local optima point)  

roaches are promoting a local search, refining that way the already achieved best solution.  
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3.2.3.  Roaches’ Reproduction 

 

As already referred, GRIO has a cooperative component between the two different and independent  

swarms. While reproducing, there is a share of knowledge from one family to another. That knowledge 

is shared because, if a roach is ready for reproduce, after having the sons from the chosen mate on the 

other swarm, those sons will be part of the family/swarm of the roach in evaluation. 

Reproduction is performed like a regular genetic algorithm, chapter 2.3. First of all, the roach must be 

eligible to reproduce and that is possible when two conditions are satisfied: 

 Roach is on fertile window (emulated with random number). 

 Roach finds a secure spot to leave eggs (emulated when best known position is not changed 

during five iterations). 

If these conditions are fulfilled at the same time, roach is able to reproduce and chooses the best-

positioned roach in the opposite family. Once two reproducing roaches are selected, it’s necessary to 

choose the “genetic code” (vector with coordinates). This vector is generated first by creating 10 times 

more than dimension (limited to 100 to avoid excessive running time), different random combinations of 

best-visited position vector (𝑏𝑣) and best-known position vector (𝑏𝑘) for each roach mating (figure 3.5).  

That way, one achieves a vector with information from two different memories of each roach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.5: Baby roach's birth example 
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For each roach involved in the reproduction process, the best combination vector obtained is chosen 

and then a new crossover process is done and a child is generated (the child vector will represent the 

baby roach’s actual position, best known position and best visited position). This procedure is repeated 

until all children (number decided by user) are born. Once it is necessary to keep swarm size to avoid 

extra running time, after born, N random extra roaches are killed. In figure 3.6 a flowchart of this process 

is represented. It was decided not  to kill the N worst positioned roaches once that would affect algorithm 

global search and increase the risk of being trapped in local optima points.  
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Figure 3.6: Reproduction behaviour flowchart 
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3.2.4.  Roaches’ Mutation 

 

A major issue in PSO based algorithms is premature convergence. In order to avoid it , is necessary to 

keep diversity in the search space. Otherwise solutions will converge into a single spot (a good one or 

not) and there will be a huge unsearched and unknown space. 

Understanding that, there were introduced two kinds of mutations: replacement mutation and frameshift  

mutation. Every time a baby roach rises, there’s the opportunity of being a healthy one, or a mutant one 

(however only one kind of mutation will occur). That opportunity is described by a random number that 

must be placed between 0 and probability of replacement (Prob_mut_rep) for a replacement to happen 

or between probability of replacement and probability of frameshift (Prob_mut_fram) for a frameshift to 

happen. 

 Replacement mutations: Some random values from child’s vector are replaced by new values 

(figure 3.7, a)). 

 Frameshift mutations: A random sequence of values is allocated in a new place (figure 3.7, b)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

All those roaches’ behaviour, described before in chapter 3.2, define GRIO algorithm designed in table 

3.1.  

 

 

 

 

 

 

 

a) b) 

Figure 3.7: Mutations. a) Replacement mutation. b) Frameshift 

mutation. 



  

 

28 

 

Table 3.1: Genetic Roach Infestation Optimization 

Algorithm 3: Genetic Roach Infestation Optimization   

Define:            Fitness function Z 

                        Parameters 

                        A=probability to socialize (table 1) 

Initialize:         Population N in random positions 

                        Each roach’s best visited position, bv 

                        Best Known Position, bk 

Compute:    for k=1 to Max_iteration 

                               𝑑𝑟 =
∑ (∑ ‖𝑥𝑖−𝑥𝑗‖𝑁

𝑗=𝑖 )𝑁−1
𝑖=1

∑ (∑ 1𝑁
𝑗=𝑖 )𝑁−1

𝑖=1

 

                               for  i=1 to N 

                                       for v=1 to number_swarms 

                                           for j=1 to N 

                                               if 𝑗 ≠ 𝑖 && 𝑟𝑎𝑛𝑑 ≤ 𝐴 

                                                   𝑏𝑘𝑖 = 𝑏𝑘𝑗 = 𝑎𝑟𝑔 min{𝑍(𝑏𝑘ℎ)} , ℎ = {𝑖, 𝑗} 

                                           if i ∈ (
1

4
𝑁 closest cockroaches)  && 𝑘 ≥

3

4
𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

                                                   𝑤 = −
0.45

𝑟𝑜𝑢𝑛𝑑(
𝑁

4
)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 + 0.45 

                                           else 

                                                   𝑤 = (𝑤𝑚𝑎𝑥 − 𝑖
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑚𝑎𝑥
) + (0.105 − 0.1

𝑖

𝑖𝑚𝑎𝑥
) 𝑁𝑛 

                                           𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝐶1𝑟1(𝑏𝑣𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝐶2𝑟2(𝑏𝑘𝑖
𝑘 − 𝑥𝑖

𝑘) 

                                           𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 

                                           if Z(𝑥𝑖
𝑘+1) < Z(𝑏𝑣𝑖

𝑘 ) 

                                               𝑏𝑣𝑖
𝑘+1= 𝑥𝑖

𝑘+1  

                                           if 𝑟𝑎𝑛𝑑 ≤ 𝑃𝑟𝑜𝑏 _𝑟𝑒𝑝 && bk  unchanged 5 iterations 

                                               𝑥𝐴 = 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑟𝑜𝑎𝑐ℎ 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑓𝑎𝑚𝑖𝑙𝑦 

                                              for baby=1 to number_children 

                                                   Cross 10*dimen times 𝑥𝐴  bk  and bv 

                                                   Cross 10*dimen times 𝑥𝑖 bk  and bv 

                                                   Cross 10*dimen times previous 2 bests vectors  

                                                    𝑥𝑏𝑎𝑏𝑦 = 𝑏𝑒𝑠𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 

                                                   if 𝑟𝑎𝑛𝑑 ≤ 𝑃𝑟𝑜𝑏_𝑚𝑢𝑡_𝑟𝑒𝑝 

                                                       Replace random vector’s inputs by random values  

                                                   elseif 𝑟𝑎𝑛𝑑 ≤ 𝑃𝑟𝑜𝑏 _𝑚𝑢𝑡_𝑓𝑟𝑎𝑚 

                                                       Randomly change vector’s inputs order 

                                                   Eliminates randomly Ne = number children cockroaches 
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4 Results 

 

In this section GRIO algorithm is tested. The goal of this section is to proof the value of this algorithm 

as well as the limitations. For that propose, some benchmark functions are selected and described in 

order that we can understand if there are different performances in different kind of problems.  Also, 

different algorithms and one reference (from another study) were selected to compare results. 

 

4.1 Benchmarks 

 

Benchmark functions are very useful once they allow us to test new algorithms using functions with pre-

known solutions and characteristics. So, in order to perform a valid test to the GRIO algorithm, the test 

functions must be carefully chosen. There are some characteristics that should be taken into 

consideration: 

 Dimensionality: Measures the number of dimensions a function affords. Functions with more 

dimensions/parameters are more difficult to solve once the search space increases 

exponentially. 

 Modality: Measures the number of peaks. As much as a function has more peaks, the probability  

of being trapped in local optima increases. Those peaks can be equal in depth or with a variable 

size. Uni-modal functions (one peak) are easier to solve. 

 Separability: Measures the difficulty to optimize a function. If a dimension depends on the other 

the function is non-separable. If a dimension is independent from the other one the problem is 

separable and easier to solve than one with dimensions related to each other.   

 Valleys: This phenomenon occurs when a narrow area is surrounded by steep descents. If an 

algorithm is trapped into such region it can be difficult to leave and slowed.  

Several benchmark functions were chosen with different combinations of characteristics and possible 

dimensions. That way it is possible to test the proposed algorithm and understand if it has some 

difficulties and which characteristics raise it. In table 4.1, all chosen benchmark functions and its 

characteristics are outlined. 
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Table 4.1: Benchmark functions and their characteristics. 

Function Max Dimension Multi-Modal Non-Separable Valleys 

Ackley ∞   - 

Becker lago 2  - - 

Bohachevsky 2  - - 

Easom 2  - - 

Griewank ∞   - 

Hartman 6   - 

Hump 2    

Langerman ∞   -

LevyNo.5 2   - 

Mccormick 2   - 

Michalewicz ∞    

Paviani 10   -

Periodic 2  - - 

Powell ∞ -  - 

Quartic ∞  - - 

Rastrigin ∞   - 

Rosenbrock ∞ -   

Schaffer2 2   - 

Shubert 2  - - 

Sixhumpcamel 2    

Sphere ∞  - - 

Threehumpcamel 2    

Wood 4   - 
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4.2 Results 

 

In this section, using all the functions enunciated on table 4.1, results are presented. In order to test the 

algorithm and better understand its strengths and limitations, the results are compared with Roach 

Infestation Optimization (RIO), 2 variations from PSO (Linear-Weight PSO and Random-Weight PSO) 

and an already used state of the art for that function. Please refer to table 4.2 to check the reference 

algorithm for each benchmark. 

Each function was tested in its advised initialization range and modality. On table 4.2 we can check all 

the functions not in a descriptive way (like table 4.1 where we can access the difficulty) but its dimension,  

initialization range, minimum and the associated reference (work from where the function was adapted).  

Table 4.2: Benchmark Function's specifications. 

Function Dimension Initialization Range Minimum Reference Algorithm 

Ackley 30  [−32,32] 0 [18] KCPSO 

Becker lago 2 [−10,10] 0 [4] GLODS 

Bohachevsky 2 [−50,50] 0 [4] GLODS 

Easom 2 [−100,100] -1 [14] RIO 

Griewank 30 [−600,600] 0 [34] MCPSO 

Hartman 6 [0,1] -3.32236 [4] GLODS 

Hump 2 [−50,50] 0 [14] RIO 

Langerman 10 [0,10] -1.4 [4] GLODS 

LevyNo.5 2 [−100,100] -176.1375 [18] KCPSO 

Mccormick 2 [−1.5,4; −3,3 ]𝑇 -1.9133 [4] GLODS 

Michalewicz 10 [−𝜋,𝜋]  -9.66015 [14] RIO 

Paviani 10 [2.001,9.999]  -45.778 [4] GLODS 

Periodic 2 [−10,10] 0.9 [4] GLODS 

Powell 4 [−10,10] 0 [4] GLODS 
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Function Dimension Initialization Range Minimum Reference Ref. Algorithm 

Quartic 30 [0.64,1.28] 0 [34] MCPSO 

Rastrigin 30 [−5.12,5.12] 0 [34] MCPSO 

Rosenbrock 30 [−2.048,2 − 048]  0 [34] MCPSO 

Schaffer2 2 [−100,100] 0 [4] GLODS 

Shubert 2 [−10,10] -186.73 [18] KCPSO 

Sixhumpcamel 2 [−3,3;  −2,2 ]𝑇 -1.0316 [4] GLODS 

Sphere 30 [−100,100] 0 [34] MCPSO 

Threehumpcamel 2 [−100,100] -1.031628 [4] GLODS 

Wood 4 [−10,10] 0 [4] GLODS 

 

Results for GRIO are presented, as already said, along with 4 other algorithms that are the basis for 

several PSO variations and also for this work. While the results from reference are filled directly from 

that work with that work’s specifications  (that can be checked on the table 4.2 under the column 

“Reference”), the other algorithms specifications were used as listed: 

 LW-PSO 

o Number of evaluations: 20 

o Maximum Iteration: 1000 

o Number of Particles: 20 

o 𝐶1 and 𝐶2: 1.43 

o Maximum inertia weight: 0.9 

o Minimum inertia weight: 0.4 

 

 RW-PSO 

o Number of evaluations: 20 

o Maximum Iteration: 1000 

o Number of Particles: 20 

o 𝐶1 and 𝐶2: 1.43 

o Maximum inertia weight: 1 

o Minimum inertia weight: 0 
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 RIO 

o Number of evaluations: 20 

o Maximum Iteration: 1000 

o Number of Particles: 20 

o 𝐶1 and 𝐶2: 1.43 

o Inertia weight: 0.7 

 

 GRIO 

o Number of evaluations: 20 

o Maximum Iteration: 1000 

o Number of Particles in each swarm: 10 

o 𝐶1 and 𝐶2: 1.43 

o Maximum inertia weight (when using linear decreasing): 0.9 

o Minimum inertia weight (when using linear decreasing):  0.4 

o 𝑃𝑟𝑜𝑏_𝑟𝑒𝑝 : 20% 

o 𝑃𝑟𝑜𝑏_𝑚𝑢𝑡 _𝑟𝑒𝑝: 25% 

o 𝑃𝑟𝑜𝑏_𝑚𝑢𝑡 _𝑓𝑟𝑎𝑚 : 25% 

With the exception of reference, the number of evaluations, iterations and particles are exactly the same 

for a fair comparison. Actually, it was attempted to keep all variables on the same values to have a better 

comparison. Final results for all tests can be found on table 4.3.  

 

Table 4.3: Complete Results (bolded best results) 

Function   LW-PSO RW-PSO RIO GRIO Reference 

Ackley Best 1.244e+02 1.197e+01 4.424 2.841e-09 1.146e-04 

 Worst 3.124e+02 1.991e+01 1.970e+01 4.589e-07 3.901e-04 

 Mean 2.227e+02 1.709e+01 1.020e+01 1.482e-07 2.005e-04 

 Std. 4.753e+01 2.695 4.548 1.422e-07 3.772e-05 

       

Becker lago Best 0 0 0 7.099e-30 9.992e-18 

 Worst 0 0 0 6.527e-18 Na 

 Mean 0 0 0 6.917e-19 Na 

 Std. 0 0 0 1.733e-18 Na 

       

Bohachevsky Best 0 0 0 0 1.288e-14 

 Worst 0 0 0 6.217e-14 Na 

 Mean 0 0 0 7.383e-15 Na 

 Std. 0 0 0 1.764e-14 Na 
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Function   LW-PSO RW-PSO RIO GRIO Reference 

Easom Best -1 -1 -1 -1 Na 

 Worst -1 -1 -1 -1 Na 

 Mean -1 -1 -1 -1 -1 

 Std. 0 0 0 1.209e-12 Na 

       

Griewank Best 9.476e-04 1.048e-01 1.351e-12 0 1.480e-02 

 Worst 4.000e-02 1.014e+00 1.970e-02 2.929e-13 7.870e-02 

 Mean 1.600e-02 5.668e-01 7.500e-03 5.256e-14 4.91e-02 

 Std. 1.120e-02 2.702e-01 8.400e-03 8.535e-14 1.78e-02 

       

       

Hartman 6 Best -3.3223 -3.32236 -3.32236 -3.32236 -3.321 

 Worst -3.2032 -3.2032 -3.2032 -3.32236 Na 

 Mean -3.2568 -3.2866 -3.2806 -3.32236 Na 

 Std. 5.93e-02 5.46e-02 5.690e-02 4.301e-09 Na 

       

Hump Best 4.651e-08 4.651e-08 4.651e-08 4.651e-08 Na 

 Worst 4.651e-08 4.651e-08 4.651e-08 4.651e-08 Na 

 Mean 4.651e-08 4.651e-08 4.651e-08 4.651e-08 4.7e00e-08 

 Std. 6.661e-17 4.839e-17 6.661e-17 2.425e-15 Na 

       

Langerman Best -1.4 -1.4 -1.4 -1.4 -2.128e-02 

 Worst -2.223e-13 -1.673e-13 -1.912e-13 -1.4 Na 

 Mean -1.015 -9.351e-01 -8.428e-01 -1.4 Na 

 Std. 5.574e-01 6.503e-01 0.671 3.482e-09 Na 

       

LevyNo.5** Best -176.1376 -176.13758 -176.13758 -176.13758 -176.13758 

 Worst -176.1376 -176.13758 -166.0791 -176.13758 -176.13757 

 Mean -176.1376 -176.13758 -175.2099 -176.13758 -176.13758 

 Std. 8.286e-14 7.784e-10 2.3812 1.899e-11 1.419e-05 

       

Mccormick Best -1.9132 -1.9132 -1.9132 -1.9132 -1.9132 

 Worst -1.9132 -1.9132 -1.9132 -1.9132 Na 

 Mean -1.9132 -1.9132 -1.9132 -1.9132 Na 

 Std. 4.441e-16 4.441e-16 4.441e-16 4.441e-16 Na 

       

Michalewicz Best -9.362 -2.686 -9.2799 -9.66015 Na 

 Worst -5.640 -1.111 -5.8654 -9.6552 Na 

 Mean -7.300 -1.890 -7.9299 -9.6579 -5.8 

 Std. 0.8607 0.482 0.9422 0.0024 Na 
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Function   LW-PSO RW-PSO RIO GRIO Reference 

       

Paviani Best -45.778 -45.778 -45.778 -45.778 -14.053 

 Worst -45.778 -45.778 -45.778 -45.778 Na 

 Mean -45.778 -45.778 -45.778 -45.778 Na 

 Std. 1.124e-14 2.824e-14 1.310e-14 5.427e-10 Na 

       

Periodic Best 0.9 0.9 0.9 0.9 0.99 

 Worst 0.9 0.9 0.9 0.9 Na 

 Mean 0.9 0.9 0.9 0.9 Na 

 Std. 0 0 0 4.299e-17 Na 

       

Powell Best 9.321e-10 1.129e-08 8.584e-09 7.070e-13 6.985e-07 

 Worst 7.843e-07 2.135e-07 7.346e-08 2.422e-06 Na 

 Mean 1.657e-07 6.412e-08 3.190e-08 4.267e-07 Na 

 Std. 2.185e-07 5.288e-08 1.915e-08 6.827e-07 Na 

       

       

Quartic Best 7.390e-02 8.730e-01 1.960e-01 3.500e-03 1.710e-04 

 Worst 11.373e-01 1.170 11.984e-01 6.800e-03 3.800e-03 

 Mean 6.674e-01 6.841e-01 7.774e-01 5.400e-03 1.500e-03 

 Std. 2.988e-01 3.099e-01 3.158e-01 1.100e-03 9.385e-04 

       

Rastrigin Best 9.155e+01 3.097e+02 1.244e+02 0 8.512e-12 

 Worst 2.817e+02 2.843e+03 3.124e+02 1.810e-10 1.990 

 Mean 1.757e+02 7.733e+02 2.227e+02 4.296e-11 6.985e-01 

 Std. 5.051e+01 5.325e+02 4.753e+01 4.969e-11 7.284e-01 

       

Rosenbrock Best 1.227e+02 4.517e+03 4.629e+00 2.684e-05 6.687e-05 

 Worst 5.476e+02 8.719e+05 7.724e+01 7.904e-02 2.218e+01 

 Mean 2.710e+02 2.261e+05 2.899e+01 1.290e-02 2.835 

 Std. 1.079e+02 2.1432+05 1.976e+01 2.280e-02 3.583 

       

Schaffer2 Best 0 0 0 0 1.279e-01 

 Worst 0 0 0 1.998e-15 Na 

 Mean 0 0 0 1.776e-16 Na 

 Std. 0 0 0 4.636e-16 Na 

       

Shubert Best -186.73 -186.73 -186.73 -186.73 -186.73 

 Worst -186.73 -186.73 -186.73 -186.73 -186.73 

 Mean -186.73 -186.73 -186.73 -186.73 -186.73 

 Std. 7.535e-10 5.755e-14 3.706e-14 1.378e-14 2.240e-05 
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Function   LW-PSO RW-PSO RIO GRIO Reference 

       

Sixhumpcamel Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

 Worst -1.0316 -1.0316 -1.0316 -1.0316 Na 

 Mean -1.0316 -1.0316 -1.0316 -1.0316 Na 

 Std. 2.220e-16 2.164e-16 2.220e-16 4.314e-15 Na 

       

Sphere Best 4.973e-04 1.700e-04 2.005e-11 4.732e-16 1.429e-36 

 Worst 8.311e-00 2.128e+02 3.131e-05 1.010e-11 5.950e-31 

 Mean 9.746e-01 2.295e+01 1.764e-06 2.510e-12 3.8883-32 

 Std. 2.365e-00 5.048e+01 6.821e-06 3.220e-12 1.004e-31 

       

Threehumpcamel Best 2.178e-134 1.130e-224 3.215e-108 2.729e-30 4.649e-18 

 Worst 9.604e-129 2.986e-01 8.255e-101 8.002e-19 Na 

 Mean 9.766e-130 1.490e-02 8.307e-102 5.1423e-20 Na 

 Std. 2.400e-129 6.510e-02 1.841e-101 1.738e-19 Na 

       

Wood Best 1.700e-03 6.698e-05 1.213e-01 7.097e-07 1.264e-03 

 Worst 5.874e-00 7.884e-00 7.720e-00 3.430e-01 Na 

 Mean 1.228e-00 2.631e-00 2.560e-00 1.059e-01 Na 

  Std. 1.707e-00 2.396e-00 2.348e-00 1.103e-01 Na 

       

 

4.2.1.  Number of Function Evaluations 

 

Other result, which can be consulted on table 4.4, is the number of function evaluations needed to 

achieve best result. That’s to say, in order to measure the performance of an algorithm, we shouldn’t  

only look at results but also at the number of times the algorithm needed to evaluate the objective 

function in order to achieve the result [4]. In order to get that analysis, on table 4.4 we have the number 

of objective function evaluations each algorithm needed (except the one from reference) to achieve the 

best value. Bolded are the algorithms that found the best result or, in case of equal values (like for 

example Sixhumpcamel function), the one that achieved the best result in less evaluations.  

Time of processing and calculation is directly related to the number of times objective function needs to 

be evaluated. Ideally an algorithm must be able to find the optimal point in the less time possible. For 

that reason, sometimes, is not profitable to have an algorithm that solves the problem in a time that does  

not fit our needs [4]. For that reason, the data presented on table 4.4 is so important as the results 

presented on table 4.3 and, for final discussions and considerations, both tables must be crossed and 

considered. 



  

 

37 

 

It is also important to note that the number of functions evaluated presented is dependent on the way 

the algorithm was programed. If the algorithm does not achieve the global optima, then the number of 

functions evaluations is the correspondent to the 1000 iterations done (maximum). If it achieves  it, then 

the result presented in table 4.4 is the number of evaluations that the algorithm took until it achieves the 

global optima. 

Table 4.4: Function evaluations for each tested algorithm. Bolded the ones  that achieved the best result. 

Function LW-PSO RW-PSO RIO GRIO 

Ackley 840e+03 840e+03 880e+03 1840e+03 

Becker lago 381360 102480 239360 920e+03 

Bohachevsky 241920 56280 113520 803160 

Easom 272160 52080 123200 896080 

Griewank 840e+03 840e+03 880e+03 1722240 

Hartman 6 840e+03 840e+03 880e+03 615960 

Hump 840e+03 840e+03 880e+03 920e+03 

Langerman 276360 58800 80960 427e+03 

LevyNo.5 840e+03 840e+03 880e+03 920+03 

Mccormick 840e+03 840e+03 880e+03 920+03 

Michalewicz 840e+03 840e+03 880e+03 732908 

Paviani 213360 66360 73040 107800 

Periodic 35280 7560 5280 11040 

Powell 840e+03 840e+03 880e+03 1040+03 

Quartic 840e+03 840e+03 880e+03 1840e+03 

Rastrigin 840e+03 840e+03 880e+03 1766400 

Rosenbrock 840e+03 840e+03 880e+03 1840e+03 

Schaffer2 263760 56280 107360 823400 

Shubert 197400 23520 46640 459080 

Sixhumpcamel 27720 8400 13200 18400 

Sphere 840e+03 840e+03 880e+03 1840e+03 

Threehumpcamel 840e+03 840e+03 880e+03 920e+03 

Wood 840e+03 840e+03 880e+03 1040e+03 
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4.3 Discussion 

 

In this chapter results are discussed. From this section, we will be able to fully understand the 

advantages and drawbacks from the new proposed algorithm. 

In order to better organize discussion and results analysis, all functions were grouped in four groups of 

complexity according to some characteristics: 

 Very Low Complexity: less than 4 dimensions and one characteristic from table 4.1. 

 Low Complexity: More than 3 dimensions or more than one characteristic from table 4.1.  

 Medium Complexity: More than 3 dimensions and more than one characteristic from table 4.1, 

or more than 9 dimensions. 

 High Complexity: More than 9 dimensions and more than one characteristic from table 4.1.  

On table 4.5 it is possible to find all the functions summarized by classification. Bolded are the functions 

that GRIO scored better. If, by instance, other algorithms achieved also the better solution, the function 

only is bolded if GRIO got the less function’s evaluations. 

For each four groups of classifications, results will be discussed taking into account not only the results 

presented on tables 4.3 and 4.4 but also convergence and results distribution.  

Convergence analysis will be supported by graphics with result at each iteration (the path that results 

took to achieve the best registered value). Some of those graphics, have logarithmic  or exponential  

scale providing a better visual analysis experience. 

For results distribution analysis, were considered all the 20 tests done for each function and algorithm. 

This way, we can analyse the kind of results an algorithm creates using boxplots . Boxplots are graphics  

defined by a box, a superior and inferior line, and some points outside if necessary. Bottom line of the 

box defines the first quartile, the second line (dividing the box) corresponds to the median and the top 

of the box the third quartile. The superior and inferior lines, respectively, tell us the maximum and 

minimum results. If some results are more distant from the box that 1.5 times of the box, then those 

values will be represented as points, outliers. 

Using convergence graphics and boxplots, despite knowing if an algorithm achieved or not the minimum 

value of the function, we may analyse if the algorithm is likely to fall into local optima values, if the 

algorithm is not consistent on the results and, if the best result was a luck phenomenon and not due to 

algorithm strategies, etc. 
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Table 4.5: Function's classification according to defined characteristics (ordered by increasing complexity). 

Function 
More or equal 4 

Dimensions 

More or 

equal 10 

Dimensions 

More or Equal to 

2 characteristics 
Group 

Becker lago - - - Very Low 

Bohachevsky - - - Very Low 

Easom - - - Very Low 

Periodic - - - Very Low 

Shubert - - - Very Low 

Hump - -  Low 

LevyNo.5 - -  Low 

Mccormick - -  Low 

Powell  - - Low 

Schaffer2 - -  Low 

Sixhumpcamel - -  Low 

Threehumpcamel - -  Low 

Hartman  -  Medium 

Quartic   - Medium 

Sphere   - Medium 

Wood  -  Medium 

Ackley    High 

Griewank    High 

Langerman    High

Michalewicz    High 

Paviani    High

Rastrigin    High 

Rosenbrock    High 
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Figure 4.1: Convergence graphs for Very Low Complexity functions. 

4.3.1. Very Low Complexity 

 

In this group there are five functions (Beckerlago, Bohachevsky, Easom, Periodic and Shubert).  

Focusing on GRIO algorithm and its results, we can discuss that GRIO achieved always the global 

minimum at least once (except for Beckerlago that had a very close value). However, doing a general 

overview on table 4.3 we can notice that GRIO only scored better on Shubert because sometimes other 

algorithms failed to achieve global minimum (leading to standard deviations different from zero). Despite 

GRIO performs better on Shubert function, it takes much more function’s evaluations to achieve that 

result. Taking into account function’s evaluation and the fact that GRIO only can be considered with 

better results due to a slightly smaller standard deviation, we can conclude that GRIO algorithm is 

outperformed by all other algorithms used. 
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 Figure 4.2: Boxplots for Very Low Complexity functions. 

On figure 4.1 it is represented convergence for Very Low Complexity functions. When using logarithmic  

scale, if algorithm achieves absolute zero, data will disappear from the graph.  

As we can see from figure 4.1, all algorithms achieved global minimum very quickly except for GRIO  

that failed to achieve it on Beckerlago function. As we can notice from the graphic of that function, GRIO 

only escaped from a local optima near iteration 800 and that condemned GRIO to fail.  

On function Bohachevsky, despite achieving global minimum, GRIO algorithm took much more 

iterations than the competition and got stuck on local optima twice.  

On all other functions GRIO manage to achieve global optima around the same number of iterations of 

other algorithms or even sooner. However if we check information on table 4.4, we can understand that 

per iteration, GRIO calculates more times the objective function and, despite achieving the global optima 

in less iterations, it required the use of more function evaluations (and that means more time for 

computer processing).  
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Regarding data dispersion on the 20 trials, we can consult figure 4.2 with all boxplots for Very Low 

Complexity functions. On Beckerlago and Bohachevsky functions, a logarithmic scale was used, reason 

why LW-PSO, RIO and RW-PSO graphs are empty because they always achieved absolute zero. 

Analysing other functions graphics we can confirm, the conclusion already got by standard deviation 

values, that GRIO algorithm failed in achieving global optima in every single one of the twenty tests. 

However all other algorithms could do it except on Shubert function.  

 

4.3.2.  Low Complexity 

 

In this section, seven functions are studied: Hump, Levy 5, Mccormick, Powell, Scaffer2, Sixhumpcamel 

and Threehumpcamel. 

Analysing this category on table 4.3 it is possible to conclude that, once again, GRIO might not be the 

best algorithm. 

On function Hump, GRIO always achieved the same results as other algorithms but presented a slightly 

bigger standard deviation. Regarding the function Levy 5, GRIO behave like in function Shubert from 

Very Low group: Best results always but the difference for RW-PSO is so small that the fact that GRIO 

uses more function evaluations makes RW-PSO a better option. On other algorithms results were not  

satisfactory. All algorithms achieved the exact same values in Mccormick function so the fact that GRIO 

needed more function evaluations makes RW and LW-PSO better choices. On Powell function GRIO 

managed to over perform other algorithms on best result ever achieved but was beaten in number of 

function evaluations, average, worst result and standard deviation. In the remaining three functions 

(Schaffer2, Sixhumpcamel and Threehumpcamel) it is easy to access by analysis of table 4.3 that GRIO 

was the worst algorithm despite it produced satisfactory scores. 

Studying convergence graphs presented on figure 4.3, we can see in this category GRIO showed up 

with some convergence problems once in function Hump, Powell, Schaffer2 and Sixhumpcamel only in 

last iterations (after 800) it managed to go into the final slope. In Powell function, where it managed to 

achieve a better result than other algorithms, it only could do it after iteration 800 (before it was 

presenting the same as RW-PSO). 

Still checking convergence performances, on remaining functions, all algorithms performed the same, 

converging almost instantly to final values. 
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Figure 4.3: Convergence graphs for Low Complexity functions. 
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Figure 4.4: Boxplots for Low Complexity functions. 
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Results dispersion can be consulted on figure 4.4. On Hump function GRIO’s box we can observe 3 

superior outlier values and a much bigger box than other algorithms. Meaning that GRIO is not being as 

consistent as other algorithms on final solutions provided. Schaffer 2 boxplots follow the same 

examination as Hump boxplots. On Levy 5 function we only can access that RIO algorithm produced 

results much more deviated than the others. On Powell function GRIO scored the best value as it was 

already noticed from previous material analysis. However, that result can be considered an outlier once 

it is very different from other values between first and third quartiles. According to figure 4.4, on Powell 

function, RIO is the most reliable algorithm. In Mccormink and Sixhumpcammel functions, boxplots are 

not a good material to bring conclusions, so understandings from other graphs and tables must be taken 

into account. Threehumpcamel boxplot clarify that GRIO is  not for sure the best way to solve this 

function, even if it presents consistent results, once other algorithms (led by RW-PSO) are consistent 

as well but around a lower point. 

 

4.3.3.  Medium Complexity 

 

Hartman, Quartic, Sphere and Wood were the functions classified as Medium Complexity. Those are 

functions with 10 or more dimensions or between 4 and 9 dimensions but with 2 characteristics at l east 

from table 4.1. 

On Hartman function, GRIO clearly outperformed all other algorithms achieving always global minima 

value. Quartic and Shpere functions were the only two cases where reference algorithm achieved better 

results that all the tested ones (despite GRIO algorithm achieved the best results among the tested one 

and always very close to reference one, that had different conditions). Checking results for Wood 

function, we can see that GRIO algorithm got a very good best result comparing to other algorithms.  

Overall GRIO scored better than all other tested algorithms (in the same conditions).  
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Figure 4.5: Convergence graphs for Medium Complexity functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Studying convergence from figure 4.5 we can see that in every single function, GRIO presented a faster 

convergence and more effective. In Hartman’s case, it is difficult to access GRIO better results once the 

scale is not the best one. However, as already referred, it is easy to notice GRIO’s more accurate results 

from table 4.3. In all other cases we can see that all other algorithms were trapped into local optima 

points and, for them, in contrast to GRIO, it was difficult to escape to a better solution. RIO, managed 

to not being trapped into local optima values on Sphere function, however RIO’s convergence was too 

slow when compared to GRIO’s one. 
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Figure 4.6: Boxplots for Medium Complexity functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reading figure’s 4.6 boxplots, some interesting results might be noticed. For Hartman function, it is 

possible to confirm table 4.3 results. Actually, other algorithms’ were able to achieve optimum value 

such like GRIO. However, in all other tests the range of results were much bigger than GRIO’s. In Quartic  

and Sphere GRIO clearly has a less range of values, meaning that results are consistent among a better 

result than all other algorithms. At least, Wood function looks to be a function susceptible to outliers’ 

values once 3 out of 4 algorithms got inferior outliers. GRIO best result is an outlier result but, if we 

exclude outliers, GRIO would still be the best algorithm to choose.  
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4.3.4.  High Complexity 

 

Finally High Complexity functions are studied. Those functions are the ones where all other algorithms 

fail to get consistent and satisfactory results: Ackley, Griewank, Langerman, Michalewickz, Paviani,  

Rastrigin and Rosenbrock. 

Looking at table 4.3, we can observe that GRIO scored the better results in all of them. In Ackley 

function, GRIO failed to achieve the absolute 0, however managed to get an impressive 2.841e-09 with 

a standard deviation of 1.422e-07 while reference one only got as best result 1.146e-04. On Griewank 

function GRIO scored the absolute 0 as best result and only a deviation of 8.535e-14 (smaller than all 

best results from other studied algorithms). On Langerman function, all other studied algorithms (except  

reference one) were able to achieve global minima but, only GRIO, could do it in a consistent way.  GRIO 

followed the same on Michalewickz function as on Griewank function. Achieved the global optimum and 

scored an average very close to the minimum. On Paviani function, all algorithms tested achieved the 

same (global minimum) in every single test and low deviations. On Rastrigin function, once again, GRIO 

managed to achieve global optima and an average of 4.296e-11 that considering that the best result on 

tested algorithms never went to decimal numbers (except on reference that achieved 8.512e-12) is very  

good. Finally, on Rosenbrock function, GRIO achieved better values in all fields again.  Tested algorithms 

were all very far away from global optima so the comparison in this function will be done with reference.  

Despite GRIO and reference algorithm scored almost the same on best result: on worst score, average 

score and standard deviation the difference is huge so, again, in this function, GRIO is the best option 

available.  

Regarding convergence, interpretation from figure 4.7 is quite easy. If we check functions where GRIO 

was not the only one to achieve the optimum point, we can see that all algorithms got a fast convergence 

to that point (even before the iteration 100). However, in functions where other algorithms failed, due to 

lack of capacity to avoid local minima points, GRIO could overcome those points and keep improving 

its score. If we look to GRIO’s line on Ackley and Rosenbrock functions (the only ones that GRIO could  

not find the minimum in 1000 iterations) it is easy to spot that with more iterations the line should keep 

decreasing, once that the algorithm was not stuck in local points like other tested algorithms, and global 

minimum should, eventually, be found. 
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Figure 4.7: Convergence graphs for High Complexity functions. 
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Figure 4.8: Boxplots for High Complexity functions. 
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Checking figure 4.8 for distribution analysis, some results can be easily validated. On Ackley’s graph,  

we can see that GRIO’s best result was an outlier one. Nevertheless, as it is easily observed, the worst  

result is much better than all algorithms best result and the median line is more tied to the inferior values 

than superior ones. Griewank function, where GRIO was able to achieve global optima, shows as well 

a good consistency in all tests done. Actually, RIO, the second algorithm with best score,1.351e − 12, 

achieved that score with a very big range of results among all tests. On Langerman function, figure 4.8 

reveals, in an easy way to read, that GRIO algorithm was the most consistent among all the others  

despite the best result is the same (equal to -1.4, global minima). Paviani was the only one where GRIO 

could not perform the best. Despite having achieved global optima, results among the 20 tests done to 

RIO were slightly inconsistent that other 3 tested algorithms. Finally, on Michalewickz, Rastrigin and 

Rosenbrock functions, GRIO clearly outperformed other algorithms achieving more consistency in the 

results produced and more accuracy. From these three functions, GRIO managed to find out global 

minima in all of then except Rosenbrock. However, in all of them the worst result obtained by GRIO is 

better than the best obtained by other algorithms. 
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5 Conclusions and Future Work 

 

In this final chapter, all learnings from previous chapters are analysed aiming to a final conclusion. It is 

supposed to analyse all previous work and explain all advantages and drawbacks from this algorithm, 

learned before. 

Questions like applicability, future work and potential are answered as well. 

 

5.1 Conclusions 

 

This work, as explained on chapter 1, was inspired by a documentary. Meaning it is a piece of creativity  

that gave a lot of fun to build. It was really rich to start something from the beginning until the end. To 

leave some ideas that looked promisor in order to move on with other ones. To look for what is done in 

the optimization world and to try to adapt and improve this work. To succeed with results and produce 

an algorithm able to solve the most complex continuous problems. 

After the final algorithm development, 3 other algorithms were selected and programmed, to act as a 

fair comparison (with the same number of maximum iterations, the same values in constants, and so 

on). Also results were compared with a reference (using the values provided in their papers). That way 

we could compare with algorithms in the same conditions and algorithms more complex with ideal 

conditions for that algorithm. GRIO and 3 other algorithms in the same conditions were tested each one 

20 times for each function once those algorithms are based in probabilities and produce different results 

each time they are run. By doing this, it was possible to study the consistency of the algorithm once it is 

supposed to run a problem the smaller number of times possible and, still, produce a result that might  

be acceptable for the problem. All the results are described in chapter 4.2 and interpretation is conducted 

on chapter 4.3. 

Looking at chapter 4.2 we are able to see a table with all the results resumed and the number of function 

evaluations. It is easy to note that GRIO demands more function evaluations than basic algorithms used 

on the comparison. Actually, this can be a drawback at first sight but, if more function evaluations makes 

GRIO achieve the result in early iterations it can be an advantage. Also it is easy to see that GRIO is 

not the top performer in a lot of functions. This first observations that can be made, by doing an overview 

on chapter 4.2 show us that, for sure, GRIO would not be the best option for some kind of functions and,  

if it is, it might take more function evaluations that other simpler algorithms.  

On chapter 4.3, results discussion, doubts raised in previous paragraphs are answered. With all 

benchmark functions split in groups according to their complexity and graphics to study algorithms 

behaviours, it was easy to spot that first thoughts were right: GRIO is better only to a certain group of 

functions. 
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Figure 5.1: Percentage of functions where GRIO scored best per group of functions  

 

As it is seen on figure 5.1, on very Low and Low Complexity functions, all other algorithms were better 

than GRIO. That happens because GRIO achieves global minima but uses more function evaluations 

or fails more times in achieving global minima. This last option is the one that occurs more often and is 

a pattern observed in almost all functions with few dimensions. Most of anti-premature convergence 

strategies from GRIO are based in changing information between dimensions, meaning that if there are 

few dimensions, few information is changed as well. Then with adaptive inertia weight techniques, that 

information can be worked and polished. So, GRIO does not outperform other algorithms in functions 

with few dimensions. 

In fact, it is proved that GRIO’s performance improves as complexity increases. On High Complexity  

functions, due to its escape from local optima techniques, convergence velocity regulation among other 

details, GRIO was able to achieve results not seen with any other algorithm. 

Concluding, we can say that GRIO allows optimization of High Complexity, high-dimensional and 

continuous functions. In fact, looking at table 4.3, and focusing only on the most difficult benchmark 

functions, we can spot that GRIO outperformed with a big distance all other algorithms. Even the 

reference ones! On Ackley function GRIO achieved an impressive best result of 2.841e − 09 and 

average of 1.482e − 07 while reference one achieved a mean of 2.005e − 04. On Griewank function 

reference could obtain a best result and means on the order of e − 2 while GRIO achieved the absolute 

zero and an average of 5.256e − 14. Michalewickz is another example of success once that GRIO was 

able to achieve global minima and an average of −9.6579  and reference algorithm only achieved  −5.4.  
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Paviani was the only example where GRIO was outperformed by tested algorithms (only the standard 

deviation was a little worst) but still was able to beat reference by a long distance. Another very difficult  

function is Rastrigin, where GRIO achieved global minima and an amazing average of 4.296e − 11 even 

though reference only got a best result of 8.512e − 12 and a mean result of 6.985e − 01. Finally we have 

Rosenbrock, as well in the group of High Complexity functions and one of the most difficult in all this 

group. GRIO was not able to achieve global minima scoring only a best result of 2.684e − 05 with 

reference achieving 6.687e − 05. However, even thou the best result was only slightly better than 

reference one, analysing GRIO’s mean value of 1.290e − 02 and reference mean value of 2.835 we can 

conclude that GRIO always achieved consistent results not seen before in these function and that is a 

big advance for this specific function. 

As a final point, analysing all the work done and previous conclusions, we can conclude that this work  

was concluded with success once that the main objective was achieved: to produce an algorithm 

capable of solving the most difficult continuous functions. Taking into account professional life and 

continuous increase of optimization in industries, this work was also rich in knowledge earned in 

optimization, its challenges and how to overcome them. Also, it was an amazing experience to learn 

how to create something new, test it, compare it and analyse the results. Taking into account all 

challenges that professional life brings to a young engineer, all these competences are a must to have 

and I am glad this work helped me to master them. 

 

5.2 Future Work 

 

Now that we know about this algorithm potential, some steps should be taken in order to transport these 

algorithm to real applications. 

A discrete version of the algorithm must be made once, all real-life problems are modelled as discrete. 

One of those problems could be related to logistics’ industries in order to optimize delivery routes taking 

into account the kind of vehicle, transportation, deadlines, fuel’s consumption, etc.  

Another potential work, in the robotic area, for an algorithm like this can be the design of robotic  

cockroaches. Each one of these robots would be an individual inside a swarm that could behave like 

real roaches. Those robotic roaches could work together in order to find something that can be 

measured by sensors.  
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